

Veracruz 2021

PREVALENCIA A *Leptospira sp* Y SU ELIMINACIÓN EN ORINA EN VACAS EN PASTOREO EN SUBTRÓPICO.

Jorge V. Rosete-Fernández, Guadalupe A. Socci-Escatell, Ángel Ríos-Utrera y Abraham Fragoso-Islas

S. E. Las Margaritas-CIRGOC-INIFAP, rosete.jorge@inifap.gob.mx

INTRODUCCIÓN

La leptospirosis es una enfermedad zoonótica distribuida mundialmente (Dragui *et al.*, 2011). Es causa de un gran impacto social y económico, por las fallas reproductivas y disminución de la producción láctea (Arias *et al.*, 2011). Se sabe que es ocasionada principalmente por la serovariedad *hardjo*; sin embargo, diferentes estudios han demostrado la participación de *wolffi y tarassovi* (Méndez *et al.*, 2013). El objetivo de este trabajo fue determinar la prevalencia de anticuerpos contra las serovariedades *icterohaemorragiae*, *bratislava*, *pyrogenes*, *grippotiphosa*, *canicola*, *pomona*, *wolffi*, *hardjo*, *tarassovi*, H89, *palo alto* y *portland V* y la presencia de *Leptospira sp.* en la orina de vacas y si la prevalencia en suero explica la presencia de la bacteria en la orina.

MATERIALES Y MÉTODOS

El estudio se hizo en clima subtropical húmedo en el Sitio Experimental Las Margaritas, en el hato de lechería tropical especializada. Se incluyeron 100 vacas Suizo Americano, Holstein y sus cruzas recíprocas. Para el diagnóstico de anticuerpos en suero se tomaron dos muestras de sangre y para leptospiras en orina dos muestras de orina, ambas, con intervalo de 30 días en cada vaca. El diagnóstico de anticuerpos contra leptospiras fue con MAT y la presencia de leptospira en orina con PCR.

La frecuencia de anticuerpos y la presencia de leptospiras en orina se consideraron como variables binarias, así que, una muestra de suero y una de orina, positivas, se registraron como uno y lo contrario como cero. Se analizó por característica con GENMOD de SAS con función liga logit y distribución binomial, incluyendo el efecto de genotipo de la vaca (puro y cruzado). El grado de asociación de anticuerpos de *Leptospira sp.* en suero y *Leptospira sp.* en la orina, se determinó con el coeficiente de correlación phi, los cuales se calcularon con el procedimiento CORR de SAS.

RESULTADOS Y DISCUSIÓN

En los Cuadros 1 y 2 se muestran las prevalencias de las 12 serovariedades por genotipo y muestreo. Solo hubo diferencia entre genotipos (P<0.05) en *grippotiphosa*, siendo mayor en el cruzado y *wolffi*, siendo menor en el cruzado. La prevalencia de anticuerpos de *Leptospira sp.* en suero y *Leptospira sp.* en la orina no fueron diferentes (P>0.05) entre genotipos (no se muestra el dato).

CONCLUSIONES

Las prevalencias de anticuerpos entre genotipos solo fueron diferentes para *grippotiphosa* y *wolffi*. La *Leptospira sp.* en la orina entre vacas cruzadas y puras en cada muestreo, no fueron diferentes. El grado de asociación entre anticuerpos en suero y la bacteria en orina solo fue significativo para *hardjo* y *tarassovi*.

Cuadro 1. Prevalencias (%) de anticuerpos contra L. *icterohaemorragiae* (ICTE), *bratislava* (BRAT), *pyrogenes* (PYRO), *grippotiphosa* (GRIP) *canicola* (CANI) v *pomona* (POMO), por genotipo de la vaca.

Genotipo	ICTE	BRAT	PYRO	GRIP	CANI	POMO
			<u>Prime</u>	r muestreo		
Cruzado	6.2 ± 3.0^{a}	12.3 ± 4.1^{a}	10.8 ± 3.8 ^a	20.0 ± 5.8 ^a	4.6 ± 2.6^{a}	3.1 ± 2.1^{a}
Puro	8.8 ± 4.9^{a}	17.7 ± 6.5^{a}	11.8 ± 5.5^{a}	5.9 ± 4.0^{b}	2.9 ± 2.9^{a}	2.9 ± 2.9^{a}
			Segund	do muestreo		
Cruzado	11.9 ± 4.2^{a}	8.5 ± 3.6^{a}	20.3 ± 5.2^{a}	8.5 ± 3.6^{a}	5.1 ± 2.9^{a}	11.9 ± 4.2^{a}
Puro	13.3 ± 6.2^{a}	10.0 ± 5.5^{a}	33.3 ± 8.6^{a}	3.3 ± 3.3^{a}	3.3 ± 3.3^{a}	10.0 ± 5.5^{a}

abPrevalencias con distinta literal son diferentes (P<0.05).

^{ab}Prevalencias con distinta literal son diferentes (P<0.05).

Cuadro 2. Prevalencias (%) de anticuerpos séricos bovinos contra las serovariedades wolffi (WOLF), hardjo (HARD), tarassovi (TARA), H89, palo alto (PALO) y portland V (PORT), por genotipo de la vaca y muestreo.

Genotipo	WOLF	HARD	TARA	H89	PALO	PORT			
	<u>Primer muestreo</u>								
Cruzado	13.9 ± 4.3^{a}	29.2 ± 5.6^{a}	27.7 ± 5.6^{a}	49.2 ± 6.2 ^a	53.8 ± 6.2^{a}	16.9 ± 4.7^{a}			
Puro	32.4 ± 8.0^{b}	29.4 ± 7.8 ^a	35.3 ± 8.2^{a}	58.8 ± 8.4^{a}	52.9 ± 8.6^{a}	14.7 ± 6.1 ^a			
	Segundo muestreo								
Cruzado	32.2 ± 6.1^{a}	33.9 ± 6.2^{a}	15.3 ± 4.7^{a}	52.5 ± 6.5^{a}	63.8 ± 6.3^{a}	33.9 ± 6.2^{a}			
Puro	16.7 ± 6.8 ^a	16.7 ± 6.8 ^a	23.3 ± 7.7^{a}	46.7 ± 9.1 ^a	50.0 ± 9.1 ^a	36.7 ± 8.8^{a}			

BIBLIOGRAFÍA

1. Arias, ChF, F. Suárez A, W. Huanca L., H. Rivera G., J. Camacho S. y T. Huanca M. 2011. Prevalencia de leptospirosis bovina en dos localidades de Puno en época de seca y determinación de factores de riesgo. Revista de Investigaciones Veterinarias del Perú. 22(2):167-170., 2. Dragui, M.G., B. Brihuega, D. Benítez, M. Sala J., M. Biotti G., M. Pereyra M., A. Homse y L. Guariniello. 2011. Brote de leptospirosis en terneros en recría en la provincia de Corrientes, Argentina. Revista Argentina de Microbiología. 43:42-44.., 3. Méndez, C., L. Benavides, A. Esquivel, A. Aldama, J. Torres, D. Gavaldón, P. Meléndez y L. Moles. 2013. Pesquisa serológica de Leptospira en roedores silvestres, bovinos, equinos y caninos en el noreste de México. Revista de Salud Animal. 35(1):25-32.